

THEORY OF FLIGHT PART II

"REMEMBER, YOU FLY AN AIRPLANE WITH YOUR HEAD, NOT YOUR HANDS AND FEET."

QUICK REVIEW

QUICK REVIEW

- What is an aspect ratio? How is it computed?
- · An aircraft with a higher aspect ratio will generate more/less lift?

?

How do spoilers differ from speed brakes?

DRAG

PARASITE DRAG

- Created from parts of aircraft that DO NOT produce lift
 - ex. Landing gear
- 2 types
 - Form drag
 - form or shape of a body on the aircraft ex. fuselage
 - Skin friction
 - Tendency of air flowing over a body to cling to its surface ex. dirt, dust, water

INDUCED DRAG

- Created from parts of the aircraft that produce lift
 - ex. wings

2.1.1 - HOW IS LIFT GENERATED?

Bernoulli's Principle/Newton's Second Law

Angle between the relative airflow and the chord

- The average location of all pressures distributed over the airfoil
- Relationship between Angle of Attack and Centre of Pressure
 - As AoA increases up to the point of stall, CoP will move forward; beyond this
 point it will move backward rapidly

What Pressure is on the top of the wing? Why?

What happens to the centre of pressure as the wing stall?

2.1.1 - STREAMLINING

Designing the aircraft in order to minimize drag

- When banking, the downgoing aileron produces more drag than its counter-part
 - As a result, the airplane will yaw in the opposite direction
- To resolve this problem, two types of ailerons are used
 - **Differential ailerons:** downgoing aileron creates a smaller angle than the upgoing aileron, balancing the drag created
 - Frise ailerons: streamlined ailerons that pivot on a hinge and direct airflow
- Overall result: adverse yaw

2.1.1 - AILERON DRAG

DIFFERENTIAL AILERONS

FRISE AILERONS

- Thin sheet of stationary air adjacent to the body of the aircraft (i.e. wings)
- As the wing moves through the air the boundary layer goes through 3 stages
 - Laminar layer
 - Transition point
 - Turbulent layer

- Angle at which the wing is permanently inclined to the longitudinal axis
 - Does not change

CONFIRMATION - TOO

Why would you want to streamline your aircraft?

Name the section of air over the wing from the leading edge the trailing edge?

2.1.2 WASH-OUT / WASH-IN

- Reduce the chance of stalling the aircraft
 - Design a wing that stalls at wing root first
 - Gives pilots aileron control
- Wash out
 - Decreasing angle of incidence
 - Decreases lift
- Wash in
 - Increasing angle of incidence
 - Increases lift

2.1.4 - **STABILITY**

- Stability
 - "tendency of an airplane in flight to remain in straight, level, upright flight and to return to this attitude, if displaced, without corrective action by the pilot"
- Static Stability
 - "initial tendency of an airplane, when disturbed, to return to the original position"
- Dynamic Stability
 - "overall tendency of an airplane to return to its original position following disturbances"

- 3 Types of Stability
 - Positive: develop forces that restores airplanes original position
 - Neutral: no forces present; airplane will neither return to original position nor move further away
 - Negative: develop forces that moves the airplane further away from the original position

2.1.4 - STABILITY

Longitudinal Stability

- Stability around the lateral axis (pitch stability)
- Size and position of horizontal stabilizer & position of C of G

Lateral Stability

- Stability around the longitudinal axis (roll stability)
- Dihedral, Sweepback, Keel effect, distribution of weight

Directional Stability

- Stability around the vertical axis (yaw stability)
- Vertical tail surface (fin)

CONFIRMATION - TREE

Around what point is lateral stability based? and what are the factors of lateral stability?

What's the key difference between static and dynamic stability?

BREAK TIME!

→ Torque

→ Causes the plane to yaw left (propeller spins clockwise)

→ Asymmetric Thrust (P factor)

- → At high angle of attack, down going propeller has a greater angle of attack
- → More lift is produced from the right side of the plane, causing the plane to yaw left

→ Precession

- → Change in plane of rotation of gyro
- → Ex: suddenly change from nose up to nose down attitude plane will yaw to the left

1. Slipstream

- Cork-screw motion of air causes different pressures on either side of the tail
- Since air flows from high pressure to low, the plane will yaw to the left
- Corrected by off setting the fin

2. Turns

- The steeper the angle of bank (irrespective of speed), the:
 - Greater the rate of turn
 - Smaller the radius
 - Higher the stalling speed
 - Greater the loading (Gs), 60° turn is 2Gs
- The higher the airspeed (irrespective of angle of bank), the:
 - Slower rate of turn
 - Larger the radius

3. Stall

- Wing becomes incapable of generating enough lift to counteract the weight
- Stall at any airspeed/attitude if the critical angle of attack is exceeded

4. Spin

- Wings are stalled (no aileron control)
- Plane rotates towards ground at constant and low airspeed

5. Spiral Dive

- Excessive nose down attitude
- Airspeed is rapidly increasing

SPINS & SPIRAL DIVES

CONFIRMATION - FOWER

What's the difference between a spin and a spiral dive?

What happens to the turn with a steeper angle of bank?

2.2.1 - PITOT STATIC INSTRUMENTS

- Pitot pressure system + Static Pressure source
- 3 Instruments

2.2.1 - ERROR IN PITOT STATIC INSTRUMENTS

Altimeter

- Pressure error "from high to low, look out below", "low to high, clear blue sky"
- Temperature error correction card

ASI

- Density variable weather
- Position corrected using calibration chart
- Lag mechanical error
- Icing blockage of pitot tube
- Water water in the system

VSI

Lag – very common

2.2.3 GYRO INSTRUMENTS

- Based on gyroscopic inertia and precession
- 3 Most common instruments
 - Heading Indicator
 - Attitude Indicator (artificial horizon)
 - Turn and Slip Indicator
- Other
 - Turn Co-ordinator
 - Compass (Special)

Heading Indicator

Attitude Indicator

Turn and Slip Indicator

Which one of these is not a error for ASI?

- 1. Density
- 2. Position
- 3. Lag

Which instrument is connected to the pitot tube?

NEXT WEEK...

- Finished section 1 of 4! (Woohoo!)
- Test next week will cover everything you learned from both classes
 - Approximately 40 questions
 - You will be given 1 hour to complete the test (the 1st hour, so come early!)
- Make sure to practice quiz 1 on the website
 - If you have any questions, use the contact us section of the website
- Next section will be Radio & Air Law
- Good Luck!